On a Class of Non-Self-Adjoint Differential Operators
نویسندگان
چکیده
منابع مشابه
Non-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملAdjoint and self - adjoint differential operators on graphs ∗
A differential operator on a directed graph with weighted edges is characterized as a system of ordinary differential operators. A class of local operators is introduced to clarify which operators should be considered as defined on the graph. When the edge lengths have a positive lower bound, all local self-adjoint extensions of the minimal symmetric operator may be classified by boundary condi...
متن کاملOn a Class of Hermitian Transformations Containing Self-Adjoint Differential Operators.
* To Dr. T. H. Goodspeed, Professor of Botany and Director of the Botanical Garden, University of California, the author expresses her sincere gratitude both for counsel and for extending every research facility, including seeds of most of the Nicotiana cultures investigated. In addition she acknowledges with pleasure seeds sent her by E. E. Cheel, J. M. Black, Professor J. B. Cleland and Hazel...
متن کاملSome results on non-self-adjoint operators, a survey
This text is a survey of recent results obtained by the author and collaborators on different problems for non-self-adjoint operators. The topics are: Kramers-Fokker-Planck type operators, spectral asymptotics in two dimensions and Weyl asymptotics for the eigenvalues of non-self-adjoint operators with small random perturbations. In the introduction we also review the notion of pseudo-spectrum ...
متن کاملNon-Self-Adjoint Operators and Pseudospectra
The theory of pseudospectra has grown rapidly since its emergence from within numerical analysis around 1990. We describe some of its applications to the stability theory of differential operators, to WKB analysis and even to orthogonal polynomials. Although currently more a way of looking at non-self-adjoint operators than a list of theorems, its future seems to be assured by the growing numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Journal of Mathematics
سال: 1960
ISSN: 0008-414X,1496-4279
DOI: 10.4153/cjm-1960-058-5